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The algebraic study of harmonic maps as pursued in this paper had its first 
appearance in papers by Calabi in 1967 [ 1 ] and Chern in 1970 [2] on minimal 
surfaces in spheres. Those papers were widely read, but were developed more 
fully only after the appearance of work by theoretical physicists, who became 
interested in harmonic maps from two-dimensional domains as toy models for 
gauge theories. Work of these physicists [ 3,4 ] on classification problems greatly 
stimulated the mathematics community [ 5 ], and by now the literature is too large 
to detail in an introduction. However, the extensive work of Zakrzewski and his 
students is fundamental to newer developments [ 16,17 ]. 

My own interest was also inspired by work of theoretical physicists on Kac-  
Moody Lie algebras [ 6-8 ]. The concise development of their ideas led to my first 
paper, "Harmonic maps into Lie groups" [9 ], of which the present paper is a 
follow-up. As we said before, originally some of this work with chiral models, or 
minimal surfaces in groups, was meant as a toy model for gauge theories. At one 
time it was believed that there might be a more direct relationship with conformal 
field theories, but I believe that seems doubtful at the moment. 

This is an algebraic paper, which simply demonstrates some algebraic connec- 
tions among the various equations. The relationship between the harmonic map 
equation and the Yang-Mills equation has been known for many years. It was, in 
fact, Roger Penrose who pointed out to me what is in the end the correct interpre- 
tation of the reality conditions. To obtain the sigma model naturally from the 
Yang-Mills equations, one needs to use the somewhat unusual signature + + - - 
in four-dimensional space. 
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Section 1 derives the harmonic maps from E 2 and E I'1 into a Lie group G as 
dimensionally reduced self-dual Yang-Mills on E 2.z with structure group G. Sec- 
tion 2 describes the gauge-invariant harmonic map equations and the construc- 
tion of the physicists' Wess-Zumino terms from this gauge-invariant equation. 
Section 3 describes the equation which must appear as we dimensionally reduce 
self-dual Yang-Mills equations in E 2'2 along planes which rotate from definite E 2 
to indefinite E H signatures. Section 4 contrasts the global algebraic structures of 
harmonic maps from E 2 (o r  S 2) and from E t'~. Section 5 gives what I consider an 
elegant gauge-theoretic derivation of the relationship between harmonic maps 
from E ~'~ into S 2 and the sine-Gordon equation. Section 6 translates our loop 
group action from harmonic maps to the sine-Gordon equation and shows how 
the B~icklund transformations are really the same in each case. 

My original goal in pursuing these ideas is to find a geometric approach to a 
quantum theory. An additional paper on symplectic and Poisson structure will 
follow. However, the original goal is elusive. 

The reader will find this paper much easier to read if portions of the preceding 
paper, "Harmonic maps into Lie groups" [ 9 ], are read first. 

1. Dimensional reduction from Yang-Mills 

The self-dual Yang-Mills equations have become a fundamental tool in smooth 
four-manifold topology. The three-dimensional monopole equation, obtained by 
dimensional reduction from the four-dimensional self-dual equations, has gen- 
erated nearly as much interest [ 10,11 ]. Further reduction to two dimensions yields 
a set of equations in a Riemann surface which have been extensively studied by 
Hitchin and are interesting in their own right [ 12 ]. 

A further bit of background information is that the Minkowski (signature 
- + + + or + - - - ) version of the self-dual Yang-Mills equations is incom- 
patible with the usual reality conditions required by a compact gauge group. 
However, a third possibility exists: that of using the signature + + - - for space- 
time. Dimensional reduction to three dimensions yields what should be a fasci- 
nating set of hyperbolic first-order equations. In this paper we discuss the further 
reduction to two dimensions. Most of the reductions lead either to an elliptic or 
to a hyperbolic equation which is equivalent to the harmonic map equation from 
domains in E 2 or E I'1 into the gauge group G. 

We first discuss the elliptic reduction. Both the self-dual formalism and the 
elliptic harmonic map equation are more familiar to differential geometers. To 
describe the harmonic map equation, we recall that ifs:M--,G is a map, then s is 
harmonic when 

d(s- ' ,ds)=O. (l) 
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In the case M is two dimensional, • : T*M-~ T*M depends only on the conformal 
structure, and the equation for harmonic maps is a conformal invariant. We lose 
very little, especially in treating the local theory, by assuming M=£2~_ E 2 (or in 
fact I2___ E ~'~ in the indefinite case). 

We always want to work in characteristic coordinate patches. For £2~_ E 2"~ C, 
we use the complex coordinates (z, Z), in which the harmonic map equation ( l ) 
becomes 

O(s-'  ~ s )+~(s - '  Os)=O. (2) 

Here ~= 0/0g and 0= O/Oz. Our formulation fundamentally involves the intro- 
duction of the Lie algebra 9-valued one-form 

A = ½ s -  ~ ds = Az dg+Az dz = ½ ( s -  i ~S de+  s -  t 0s dz ) .  (3) 

Note {A: (p), Az(p) } _ g®C = go 
We get two equations forA when s is harmonic. Equation (4a) is the harmonic 

equation and eq. (4b) is the local consistency condition for the existence of  
s - t  ds=2A: 

d . A =  (0Az+0A:) dz^  d e = 0 ,  (4a) 

dA+ (A ^ A )  = (OAz-OAz+ 2[A:,Ae] ) dz A d e = 0 .  (4b) 

In a simply connected domain 12__ C, a solution to (4) is equivalent to the exis- 
tence of a harmonic map s:12--,G satisfying (2) and (3). However, the form in 
which our harmonic map equation is to be recognized is through the parameter- 
ized family of  flat connections D (2) for he C*, 

Da = [0+  (I - 2 ) a e ]  de+  [0+ ( 1 - 2  -1 )A.-] dz .  (5) 

The connection one-form of Da has values in the complexified Lie algebra gc for 
2 s C* but in the Lie algebra for 2 = (2) - ~ e S i. 

Theorem 1.1. The Lie algebra-valued one-form A represents a harmonic map 
s: g2~ G i f  and only i f  the associated connections Da are flat he S 1, i.e., 

[~+ (1 -2)Ag,  0+ ( 1 - 2 - ' ) A . ]  = 0 .  [] (6) 

Now we review the self-dual Yang-Mills equation in a similar formalism. First 
we remind our readers of the usual definite self-dual equations on • ___ E a. The 
independent variable is the Lie algebra-valued one-form 

4 

A =  ~ A i d x  i . 
i=1  

The one-form A is self-dual when the curvatures 
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Fij = [O/Ox '+A.  O/OxJ+Aj] 
satisfy 

F= ~ Fadxi ^ d x ; = , F .  

In the signature of  E 4, this becomes in coordinates just 

Fi2 =F34, F|3 = -F24,  FI4 =F23- (7) 

However, it is more useful to introduce characteristic coordinates into E4= C 2 by 
setting z=x ~ +ix z, w=x3 + i x  4, g = x  ~ - i x  z, ) ~ = x 3 - i x  4. Then (7) becomes 

F_-.~ =F,v.e = 0 ,  F-_.e+F~,.w=O. (8a,b) 

The curvature or Lax pair formulation is that A is self-dual if and only if the 
curvature in certain families of  complex two-planes vanishes. This can be written 

0 ~ 0 
[ O + A z + 2 ( O + A ~ ) , - ~ z + A ~ - 2 - ( ~ w + A , , ) I = O ,  (9) 

where 2~CP t under the appropriate projectivized formula. Note that we have 
given the self-dual formulation, which differs from the more natural and usual 
anti-self-dual formulation by the change of  orientation which exchanges w,--,v~ 
(x4--, -x4). 

Now the change in signature from E 4 to E 2"2 makes a very slight but very im- 
portant change in these equations. Equation (7) becomes 

F12 = - F 3 4 ,  Fl3 = - F 2 4 ,  Ft4 =F23. 

This leaves (8a) unchanged but replaces (8b) by 

F~,z+F,v,~ = 0 .  (8c) 

The Lax pair or twistor formulation for this case follows that for the case of E 4 
and definite signature. The proof is just a calculation. 

Theorem 1.2. The Lie algebra-valued one-form A solves the indefinite self-dual 
Yang-Mills equations in E 2'2 if and only if the curvatures in the families of planes 
parameterized by ;tECP ~ vanish: 

O 0 , 0 
[] (lO) 

The essential difference between the two cases lies in the fact that in the defi- 
nite case there are no real characteristic planes. The complex planes in the twistor 
formulation solve 
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g=)t-~ff,+a , z = - 2 w + f l .  

However, in the indefinite E 2"2 case, the planes become 

~ = 2 - ~ + o t ,  z=Aw+fl,  

which for 2 = X- t and a =flare  in a real plane ~q 2 ~ R4. This leads to the following 
proposition. 

Theorem 1.3. Given the n-valued one-form A solving (10) in ¢P, a simply connected 
domain, and p~S ~, there exists a gauge transformation Up: C)--.G such that A= 
u ;  ~ (Aup +dup) satisfies 

A+p:iw =0, A~+pAw=O. (II) 

Proof. Since the curvatures of the real planes parameterized by pe S ~ vanish, there 
exists a gauge transformation which trivializes the connections on these planes. 

We do not actually want to carry out this gauge change at this point. One of our 
goals is to obtain a gauge-invariant formulation of the harmonic map equation. 

The first dimensional reduction we accomplish merely by assuming that we 
have a solution to (11 ) in dT=I2XC__CXC---E 2"2 which is independent of the 
variables (x 3, x 4 ) _ ( w, ~)  e C. There are fancier ways to say this (we do so later). 
For some mysterious reason, we obtain an identification of (dw~ dz, d ~ ~  dg) if 
we are to obtain conformal equations. Let B=B_~d~.+B-_dz, where A,~=Be, 
Aw= B._. [] 

Theorem 1.4. Let A=Az dz+A: dg and B=A,~ dg+Aw dz represent a dimen- 
sionally reduced solution to the indefinite self-dual Yang-Mills equations in 
0 =I2×C___E 2,z to I2=_E 2. Then 

[0/0e+Az +2Bz, O/Oz+A~ +2 -~B~] = 0 .  ( 12 ) 

Furthermore, if  g2 is simply connected, then there exists an (essentially) unique 
gauge transformation u: 12--. G such that if  

A = u - I ( A u + d u )  , B = u - I B u ,  

then A+ B= 0 and 

[0107.+ ( 1 --2)Az, alOz+ ( 1 --,!. -1 )A_.] = 0 .  

Furthermore X= ½s-' ds, where s is harmonic. 

Proof. We obtain (12) from (8a) and (8c) by assuming that the one-form A 
satisfies (0 /0~)A= (a/Ow)A=O. The gauge change u simply trivializes the flat 

connection in ~, 
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Da = ( (~+Az+2Bz)  dg, (O+A: + 2 - t B : )  d z ) ,  

at 2=  1. If you like, u =  u~ trivializes the family of  fiat connections at 2 =  1, u_ n 
trivializes the same family at 2=  - 1, and s=ui  -~ u_t is harmonic. Because the 
trivialization of a flat connection is unique up to an element of G, s is unique up 
to multiplication by constants in G on both the left and the right. [] 

Note that the converse of this theorem is naively true. However, one elegant 
corollary gives a more geometric explanation of the S ~ action described in section 
8 of our first paper [ 9 ]. 

Corollary 1.5. The rotation 2~p2, A ~ A  and B ~ p - ~ B  results in an S ~ action on 
harmonic maps. 

Proof. This is an obvious description of a transformation of the self-dual Yang- 
Mills equations which preserves the real structure of G when p=/~-  1 and com- 
mutes with dimensional reduction. Therefore, it leads to an action on harmonic 
maps which is unique up to dividing on the left and right by constants. Let up 
trivialize the self-dual connection Da. Then p 's= U~Iu_p. [] 

In dealing with the Minkowski reduction, we need only remark on the differ- 
ences between the Euclidean and Minkowski versions. For harmonic maps, we 
simply replace the characteristic coordinates in E 2, (z, Z )=  (x+iy ,  x - i y ) ,  by 
light cone coordinates in E ~'~, (~, r/) = ( x +  t, x - t ) .  It will serve us conceptually 
to replace 2 by ~ also. Then, if we prime the numbers for the Minkowski versions 
of our Euclidean equations, we have 

° (, (2 ' )  

0s 0s 
A=½s- '  ds=Andr/+Acd~=s- '  ~--~ d r / + s - '  ~-~ d~, (3 ' )  

0~A¢+ A, ,=0 .  ~ A ¢ -  A . + 2 [ A , , , A ¢ ] = 0 ,  (4a ' ,b ' )  

D.  = (0/0r/+ ( I - cr)A, dr/, 0/0~+ ( 1 - cr - t  )A¢ d~) ; (5 ' )  

note that the flat connection D.  is defined to lie in gc for eel;*, but in g for eeN; 
clearly ,t # a, as Da was real for 2~ St; 

[0/~r/+ ( 1 - a)A¢, 010~+ (1 - a  - t  )Ae] = 0 .  (6 ' )  

The equivalent of theorem I. 1 says that in a simply connected domain 12_c E ~' u, 
(6 ' )  is equivalent to the existence of the harmonic map s: I2--. G. This completes 
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a condensed description of the Minkowski version of harmonic maps. 

Of course, we need not repeat our introductory remarks on self-dual Yang- 
Mills equations. However, it will be easier to understand the Minkowski reduc- 
tion if we introduce variables which are characteristic for this reduction. Let 
~=x  t + x  3, r /=x t - x  3, ~' = x 2 + x  4 and r/' =xZ-x  4. 

Lemma 1.6. Equation (10) written in null-cone variables becomes 

0 0 0 

where e =  - i [  (2+ 1 ) / ( 2 -  1 ) ]. 

(13) 

Proof Naively we consider (10) to be the vanishing of the commutator of two 
operators [Lt, L2 ] = 0, 

° ( ° ) [ ÷  ( ° ) 1  Lt = 0x----- S +Al + i  ~ +A2 +2  +A3+i ~X 3 +A3 , 

;t 0 0 Lz = [-6----xl + At - i  (oOs + Az ) l+  -~---x3 + A3 - i  ( o~  + A4 ) • 

Add and subtract the two to get the two operators 

gl+g2 (;t+l)( 0 0 ) ,( 0 0 A4) = ~ + A , + ~ + A 3  - i ( ; t - 1  ~ + A 2 - 0 x 4  ' 

(0 0 ) ,(0 0 ) 
Lz-L~=(+; t -1 )  ~x~ +At Ox 3 A 3 - i ( 2 + 1  ~x2 +Az+-~x4 +A4 . 

Now introduce the characteristic coordinates (~, r/) and (~', r/') as described 
above. At the same time, divide the first by 2(3.+ 1 ) and the second by 2 ( 2 -  1 ). 
This gives the two operators 

Lt +L2 
Wt - 2(; t+ 1 ) 

L2 - L t  
Wz-  2 ( ; t -  1) 

0 . . ; t - I  [ 0 +A,c'\) 
- -  __ @ +a¢--I ~ -T  ~ '  

) 0 + A . - i  +A¢, . 
or/ TsT 

Substitute a =  - i (2+ 1 ) / ( ; t -  1 ), and the vanishing of the commutator of LI and 
L2 is equivalent to the vanishing of the commutator of Wt and W2 except at 
2=  _ 1. The substitution of a for ;t replaces ;teS t by a ~ ,  which is consistent with 
our comments following (5 ' ) .  [] 

We now follow the same reasoning as for the Euclidean case. Dimensional re- 
duction follows from assuming invariance with respect to 0/0r/' and 0/0~'. 
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Theorem 1.7. The self-dual Yang-Mills equations on I2×E m ~_E TM )<E TM = E  2"2 

when dimensionally reduced to 12 become 

[0/0r/+A~ + aB,, 0/0~+A¢ + a -  tB¢] = 0 ,  (14) 

where a te* ,  A=A~ dr/+A¢ d{ and B=A¢, dr/+A~, d~. I f  this equation is satisfied 
and g2 is simply connected then there is an essentially unique gauge transformation 
u:g2--,G such that i f  u -~Au+u -~ d u = A  and u - I B u = B ,  then A + / ~ = 0  and 
A= ½s- ' ds is the one-form associated to a harmonic map s: g2--,G. [] 

The proof is the same as for the Euclidean version. 

2. The indefinite self-dual equations and Wess-Zumino terms 

Some of the results in this chapter can be found in ref. [ 13 ]. We begin with a 
more global description of the reduced elliptic equations. Let M be any piece of 
surface, simply connected or not, and consider M as a complex one-manifold. Let 
P be a principal bundle with structure group G over M. The Lie algebra-valued 
one-forms A =Ae df+A~ dz of our previous chapter become invariantly described 
as the connection D on P. The unknowns (A~, Aw) have already been identified 
with a Lie algebra-valued one-form B=A~ dZ+Aw dz, so Be=A~, B:=Aw. Glob- 
ally B is to be a section of  the bundle Ad P® TgM, where Ad P is the associated 
bundle Ad P=P®Aa g. In Hitchin's and Simpson's description of the related 
problem obtained from the self-dual equations on E 4, B plays the role of  a Higgs 
field. Le t '  and " indicate the (I ,0)  and (0,1) parts of complex one-forms. The 
case we are considering has been treated in detail by Valli [ 14 ]. 

Definition. The indefinite self-dual equations on P consist of  the equations 

D ' B " = D " B " = O ,  [ D ' , D " ] + [ B ' , B " ] = O .  (15) 

The self-dual equations studied by Hitchin are [D', D" ] - [B', B" ] =0.  It is nec- 
essary to complexify the group to handle them. 

Theorem 2.1. Let (D, B) be a solution o f  the indefinite selfidual equations on P. 
In any simply connected region of  M, P is trivial and there exists a trivialization 
P ~ - M x G  in which 

D ' + B ' = 0 ,  D " + B " = ~ .  

Furthermore 

- B '  =IS -10S, - B " = ½ s  -I  Os, 
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where s :M- ,  G is a harmonic map. 

Proof. This is an invariant formulation of the contents of theorem 1.4. t3 

The converse is clear. 

Corollary 2.2. I f  s : M ~ G  is a harmonic map, then 

D=d+½s - t  ds ,  B = - ½ s  -~ ds 

gives a solution to the infinite self-dual equations on the trivial principal bundle 
P = M ×  G. [] 

However, much more is true. The next theorem is an easy calculation, but the 
result is very striking. It is hard not to hope this may be helpful in quantization 
of harmonic maps. 

First, a word of introduction. This is well known at least in the physics litera- 
ture and is meant to be expository. Compact Lie groups with a biinvariant metric 
(and we are indeed assuming G has a biinvariant metric) all have a canonical 
closed three-form 

7 = ~ ( [ s  - l  ds, s -~ ds].s  - t  ds) . (16) 

Fix a base map so:M--,G. Then we consider homotopic s, with a homotopy 
s t : M ~ G  for t~ [0,1 ]. (If  M has a boundary, we will assume for now that 
s, I OM-- So I OM. ) The variational problem for harmonic maps has the Lagrangian 

1 I E ( s ) =  ~ (s-~ ds, s - t  ds) d/z. 
M 

The Lagrangian for the Wess-Zumino term is 

1 
~ 7 * s = ~  ~ ([S-I~ls, s - I ~ ] , S - I ~ ) .  

M X  [0,1 ] M X  [0,1 ] 

Be careful, as d = d +  (O/Ot)dt is a three-dimensional object in this integrand. 
I f G = SU (2) = S 3, f i x  t O,~ ] y*S is precisely the volume in S 3 enclosed between 

the surfaces s (M)  and so(M). The Wess-Zumino term is exactly that which arises 
in the consideration of the classical isoperimetric problems. 

Ordinarily in geometry one prescribes f i x  [o.t jy*s=Q as a constraint, but it 
could be considered as part of the variational problem. 

Lemma 2.3. Fix So. Then the variation o f  the Wess-Zumino term along ~s=s~ is 
just 
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f ([s- '  ds, s-l  ds].~) , 

which contributes • [s-1 ds, s -  1 ds] to the Euler-Lagrange equation. 

Proof. Extend the variation along the homotopy 8s,=st¢,, where qTo=0, @1 =@- 
Naively the variation can be seen to be 

f ([s-l as, s-l ~] ,a~+[s- ,  ~ ,~])  . 
M3 

However, integration by parts leaves only the boundary term 

f 
M3 M X  1 

This had to happen, as 7 is closed. [] 

Theorem 2.4. Let (D, B) be a solution o f  the indefinite self-dual equations on a 
simply connected surface M. Then for 2e S I, there exists a G-invariant bundle map 
Pa : P---,Mx G varying smoothly with 2 such that 

Pa.D' +2-~B'oP£ 1 = 0 ,  Px.D" +2B"oP£ ~ =0.  

Moreover, the G-invariant composition Pp oP £ ~ : M ×  G--+ M × G can be represented 
as a map Wp,a:M--+G. Then W= Wp.x satisfies the harmonic equation with Wess- 
Zumino term 

~(w -10w)+O(w -1 ~w)+~[w -~ ~w, w -~ 0 w ] = 0  

f o r T = ( p + 2 ) / ( p - a ) .  

Proof. We can work in any gauge, so we choose the one we have already used 
frequently, where P =  M X  G, D = d +A and B - A  = 0. The self-dual equations tell 
us that for i t ,S 1, 

9 ( 2 ) =  (0+ (1 -2 )Az ,  0+  ( 1 - 2  - l ) a=)  

is a G-connection which is fiat. Let Ea be the trivialization, i.e., E j  -1 dEa =Da. 
There are a number of possible normalizations of  Ex. In the absence of other 
information we can pick a base point p and require Ea(p) =-L 

Now in this coordinate description, Wa.p = w=EaE F ~ (we drop the subscripts 
in the computation). Just compute to get 

Ow=~( E x E ;  ~ ) = ( p - 2  )E~AeE; ~ . 
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Here we use 

OEa = ( 1 -A)EaAe ,  ~(Ep)-I = ( p -  I )A~E; ~ . 

In the next step we use 

OEp = ( l - - ? - '  )EpAz , 

Then 

8 ( w - ' O w ) = ( p - 2 ) O ( E o A z E p ~ ) = p - ' ( p - 2 ) E p [ A z ,  A:]Ep ' . (17) 

By reversing (0, p, 4) and (~, p-~, 4-~ ) we get 

~ ( w - '  O w ) = p ( p - ~ - 2 - t ) E p [ A ~ , A e ] E p = ( p / 2 ) O ( w  -~ ~w) . (18) 

Furthermore 

O(w - 1 0 w ) - ~ ( w  -I 0w)= [w-lOw, w-lOw] . (19) 

It is now straightforward to compute 

0=~(w -~ Ow)-  (pl2)O(w- '  ~w) 

=½(1-014) [~(w-' Ow)+ O(w-' ~w)] 

+ ½ ( l + p/2 ) [~( w - '  Ow)-  O( w -~ ~w)] 

( 2+p  ' 0 w ] ) .  [] - 21 2-p20(w-I Ow)+O(w- I  Ow)+ ~-2 [w-I ~w, w- 

O ( E ; ~ ) = ( p - ' - I ) A ~ E ;  ~ , OAe=[Ae, A=] . 

Corollary 2.5. For real solutions W: M-+ G, in complex coordinates, z will be purely 
imaginary. 

Proof. Actually, the geometric term is (naturally) real. In the theorem above 

2+p  2/p+ 1 

p - 2  - ( 2 / p ) - ~ -  1 

is purely imaginary as 2/p has modulus 1. These two facts are reconciled by the 
fact that dz Adz (the K~ihler form ) is purely imaginary (skew). [] 

We conclude by some remarks on the Minkowski version. Here it makes less 
sense to think of M as a piece of a compact surface with a principal bundle P 
because we are dealing with wave equations. However, the substitution of ~--, 17, 
z--+ ~, 2-+ a and p-+ v yields precisely the same theory. Of course, if one starts with 
periodic solutions, the difficulty of determining which of these solutions are pe- 
riodic is hard. However, energy conditions on planes (Bq, z) ___E I'~ would be pre- 
served. Here the Wess-Zumino z is real. According to Witten, the desired param- 
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eter for conformal field theories is r = _+ 1. This corresponds to a (or 2 ) = (0, co ), 
which is exactly the singularity from our point of  view. 

3. The null e q u a t i o n s  

In reducing the indefinite self-dual equations from four to two dimensions, we 
need to choose a plane of  vector fields ( a  O/Op+ fl O/Oq) which leave the problem 
invariant. This leaves a dual plane of  one-forms representing dynamical vari- 
ables. If this dual plane is definite, it inherits a definite metric and the discussion 
leading to theorem 1.4 is canonical up to Euclidean motions of  this plane. If the 
dual plane is indefinite but non-degenerate, the same goes for the application of 
theorem 1.7, up to Lorentz transformations of this plane. Of  course, fixing vari- 
ables in E 2"2, rotating the planes and watching the equations vary as the inner 
product changes is a little more difficult. 

The above discussion misses some cases: when the plane of dynamical vari- 
ables has one degenerate null direction and when it is totally null. The first is 
clearly somewhat more relevant, since we would have to pass through this case as 
we rotate from Euclidean to Minkowski space. The second case is included for 
completeness. 

We find the real formulation of  the self-dual equations ( 13 ) more useful, 

' \ 0 r /  " 

Now we need to choose one null direction (say q) and one perpendicular definite 
direction (say x3). This means the invariant plane of vector fields was 
ot 0/0~+ fl O/OxL This leaves the equation 

0 

We shall lose nothing by fixing gauge with A .=  - A ¢ ,  A¢= -A . .  and replacing x 3 
by 2x3=x.  So (20) becomes equivalent to the vanishing of the commutator of 
the two operators 0/0r/+ O/Ox + ( 1 - a ) A .  and O/Ox + ( cr- 1 )A¢. Subtract a times 
the second from the first to get the equivalent equation 

[O/OJT+(1-a)An+~(I-~)A¢,O/Ox+(a-1)A¢]=O. (21) 

Let 

Eg'--0 eo= --0 e o - ( o _ l ) &  Or/ ( l - a )  (A.+aA~), Eg~ Ox - 

locally be the gauge which trivializes the connections for aS I. 

(22) 
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Theorem 3.1. The dimensionally reduced indefinite selfidual Yang-Mills equa- 
tions on a simply connected domain g2=_N 2 are equivalent to any of the equations 
(errs 1, tre~) 

O _,[Eg,  O__E. O E _ t ] = O  
o x ( E g '  ~ E ~ )  + ( l - ° )  Ox " E ; I o Y  1 " " 

Proof Proceed as above to get the definition ofE~:g2~G, tr~ 1 real. From eq. 
(21 ), we have that the coefficient of tr 2 in the commutator is zero. This coeffi- 
cient is 

-- [O/Ox-A~, A~] + [A~, - A , ]  

O E I  [ E g l ~ E a ,  E21 E~]) 

This yields the equation as a consequence. Now suppose we have a solution of 
any of these equations. We define A, and Ae using eq. (22), 

8 
A¢= (or- 1 ) - lEy l  -~xE~, 

( o O_Eo  A . = ( 1 - a )  - l  Eyl-~qE,,+aEgtox ]" 

The null self-dual equations (21 ) encode three equations: the coefficients of cr °, 
crt, az. The coefficient of 0r 2 has been checked to be the expression in the theorem. 
Equation (22) has as consistency equation the vanishing of the equation at a S  1. 
The coefficients have been chosen to vanish at a =  1. These three independent 
conditions verify that (21 ) is identically satisfied. [] 

Corollary 3.2. The null harmonic map equation can be regarded as the limit of 
either a Minkowski or a Euclidean harmonic map equation with inner product ( 1, 
e 2) and Wess-Zumino term ~ - i / ( 1 - a). 

Proof We first write the harmonic map equation in orthogonal laboratory 
coordinates, 

OX S - I  - I  t '  , - -  O x ] -  Ot Ot] s - '  ~x'  s -~ 0t_l 

where t' is now real in both cases. Now let the signatures decay by allowing the 
metric on forms to decay in the t variable. In other words 

o,) [ 0s ml=o 
a x \  +E2 ~x ' s -  atJ Ot \  -~ +te s -~ ~ . 
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Set t = 1 / e ( 1 - cr) and let E ~ 0 to get the null harmonic map equation for s at tr. [] 

It came as a surprise to me to discover that there are two cases of  totally null 
planes possible. In eq. ( 13 ), we can either let ~/and ~' be the dynamic variables, 
or r/and r/'. We take the second case first. Here ( 13 ) becomes 

[O/Orl+A,~+crA¢, 0/0~/' +A,,  + trA¢, ] = 0 .  

Proposition 3.3. One case o f  the totally null self-dual reduction & equivalent to the 
harmonic map equation with only a Wess-Zumino term 

[s - t  Os/Orh s -~ 0s/0r/' ] = 0 .  

Proof Gauge fix with A,~+A¢=O, A,c +A¢ =0.  Let s trivialize the connection D,, 

(tr-- 1)Ao=s  - t  Os/Orl, ( a - 1 ) A , r = s  - t  Os/O~l, 

for any a #  1. The coefficient of  t7 2 is exactly the Wess-Zumino term. The con- 
verse is just as easy to check. 

Proposition 3.4. The second case o f  a totally null reduction consists o f  a connec- 
tion with a covariant constant section. 

Proof We now have the commuta tor  

[0/0r/+A, + a 0/0~' + A ¢ ,  A¢ + tr-  IAq, ] = 0 .  

Clearly the connection (O/Orl+A,t, 0/0~' +A¢ ) has no condit ion on it, although 
in a standard way we can expect to be able to fix the gauge so that  A,~+aA¢ =0.  
The three independent  conditions are 

[0/0n+A,,,  A,,. ] = 0 ,  [0/0~' +Ae,, A~] = 0 ,  

[0/0~' +A¢,  A,,, ] + [0/0r/+A,,, A¢] = 0 .  

No further gauge fixing is a priori possible. However, if  we derived this as the 
limit of  one of  the other cases, we might think the gauge choice A, c = trA~ is a 
possible reasonable assumption (for some e).  Then we have an equation for a 
covariant constant section of  our bundle (P  × ad g )® T*M. The converse clearly 
does lead to a solution with no restriction, o 

4. The group action for the elliptic and hyperbolic problems 

The traditional theory of  integrable systems is fundamental ly tied up with t ime 
evolution. In studying harmonic maps into groups, we have at hand an elliptic 



K. Uhlenbeck / Harmonic maps, self-dual Yang-Mills and sine-Gordon equations 297 

version and a "Wick rotated" hyperbolic version. The hyperbolic type has very 
close connections with the sine-Gordon equation and may indeed be integrable. 

In pursuing the connection between the two, we hope to shed some light on the 
meaning of"integrable" for elliptic, non-time evolutionary problems. This is cer- 
tainly in the spirit of Noether's theorem, which connects symmetries of the inte- 
gral with divergence-free vector fields on the domain and is blind to the signature. 
However, the symmetries we construct for harmonic maps are non-local and do 
not fit into the framework of Noether's theorem. They are, in fact, symmetries 
constructed by factorization of a loop group. 

We review the algebraic structure of the "loop group" action on the solution 
space of harmonic maps from simply connected £2 c S z into G = U ( N ) ,  the uni- 
tary group or G = SU (N) c U (N) as given in our earlier paper [ 9 ]. Then we con- 
trast these formulas with the Wick-rotated formulas. Although the formulas are 
the same, differences appear in the global structure of the solution space. 

We already started this project of comparison in the first section, with the de- 
scription of the two Lax pairs in characteristic coordinates (z, :~)~C and (~, 
r/) eE I,~. We restate our fundamental theorem, which is theorem 2.4 and its con- 
verse of ref. [ 9 ]. For the remainder of this section G = U (N), Gc = GL (N, C). 

Theorem 4.1. The map s:g2~G is harmonic i f  and only i f  there is an extended 
harmonic map 

E:C* ×g2--.Gc = GL(N, C) 

such that the expressions 

( 1 - - 2 ) - 1 E £  1 ~E~,  ( 1 - 2 - t ) - t E j  -1 0Ea 

are constant (in 2) and satisfy in addition 
(a) E l=  l, 
(b) E_ l=s ,  
(c) E*~a) = E j  -l for T(2) = ( 2 ) - ' .  

The proof is not difficult [ 9 ]. The constant expressions will turn out to be A., 
and A_- and Ea trivializes the fiat connection ( 0 + ( 1 -,~ )Ae, O + ( 1 - 2 - t )A_- ). The 
involution r(;t) =2-~  has 121 = 1 as its fixed point set and (c) is equivalent to 
Ea~G being in the real group for 121 = 1. 

The Minkowski or hyperbolic version is only slightly different. 

Theorem 4.1'. The map s: g2~G for simply connected I2~_ E ~,~ is harmonic i f  and 
only i f  there exists an extended harmonic map 

E: C* × g2--*Ge = GL(N, C) 

with the expressions 
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( l - o ' ) - I  E~ -I 8E./Orl, ( l - e - t ) - t E ~ ,  -10EdO~ 

independent of aeC*. In addition we require 
(a) EI=L 
(b) E_m=s, 
(c) E*~) =E~ t for 3(a) = e. 

The proof is no different from the proof for the elliptic case. Here E~ trivializes 
the flat connection 

(O/Or/+ ( 1 - cr)A,. O/Od~+ ( 1 - a - '  )A~). 

The involution a--. # has the real line ~ as fixed point, which is the set aeC* where 
E~ is unitary. 

The fundamental algebraic structure we will be discussing later is the action of 
a loop type Lie algebra (or half of  it, if you like). However, in discussing the 
group actions we find it simpler to work with a smaller group. The group we work 
with is 

A~ =A~(S 2, GL(N, C) ) ___ Meromorphic maps (S 2, GL(N, C) ) .  

Here f~A~ is meromorphic from S 2 to GL(N, C), with no poles or zeros at (0, 
oo ). In addition we require f (z (2))* = f  (2) - 1, our standard reality condition, 
and'a convenient normalization f (  1 ) =L  We also defined X~ as the object in 
which, E(z, g) sits. It consists of the holomorphic maps from C*-oGL(N, C) sat- 
isfying our by now usual reality condition. SofeA~ has poles and zeros away from 
(0, oo) and eeX~ is holomorphic everywhere except at (0, oo). We define the 
map f**: X~ ° --,X~ ° by the Birkhoff factorization 

f ( ~ ) e (2 )= f * (e ) (2 ) r -1 (2 ) ,  f r ~ A ~ , e , f * ( e ) ~ X ~ .  (23) 

Theorem 4.2 (theorem 6.3 ofref. [9] ). The map 

f# :E . ( z , g ) -o f*E . ( z ,Z )  

for fixed (z, g) EC determines a representation of A~ on the space of extended har- 
monic maps. 

Now the Minkowski version of theorem 4.2 is identical. 

Corollary 4.3. Theorem 4.2 is valid for Minkowski as well as Euclidean domains, 
if  we replace the Euclidean involution 3 ( 2 ) = £ - t  by its Minkowski counterpart 
• (a)  =o. 
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The proofs of the theorem and its hyperbolic counterpart are identical: One 
factors elements of A~ [or A ~ with z(a) = #] into "simplest factors". For the Eu- 
clidean case, these are 

f(;t) = n + ~ O . ) n " ,  
).-o~ t ~ - I  

~ ( 2 ) -  a/].- 1 a -  1 ' (24) 

rc is the Hermitian projection on a subspace of C N. We showed in two ways that 
these could always be made to act, first by direct construction in the factorization, 
and then by showing that the same solutions could be arrived at by a pair of 
consistent ordinary differential equations (in (z, Z) or equivalently (x, y) ). 

For the Minkowski case, the simplest factors are different due to the reality 
condition. We have 

(a-a~(1-a~ 
f(cr) =n+u . (c r ) r c  I , u ~ ( a ) =  k-~L-~:\~_~:" (25) 

At first glance, there is very little difference. However, we pass now to the global 
theory. 

Theorem 4.4. Harmonic maps s: S 2--, G = U ( N) have finite uniton number n, which 
is the smallest degree o f  E2(z, Z) represented as a polynomial in 2. The action of  
An preserves this uniton number. Changes in uniton number can be achieved by 
looking at singular B~icklund transformations corresponding to or--, (0, oo ). These 
singular transformations consist o f  a consistent Cauchy-Riemann equation and a 
linear constraint. [] 

Theorem 14.6 of ref. [9] shows that the entire solution space can be con- 
structed canonically by applying singular B~icklund transformations. The group 
A~ does not act transitively. In the very simplest case its effective action is like 
SL(2, C) acting on a Grassmannian submanifold CP l _ S U ( 2 )  containing the 
image s ( S 2 ). For s: S 2-~ CP l _ SU ( 2 ) holomorphic of degree k, SL ( 2, C ) is tran- 
sitive only for k=  I. 

Without going into the details of the action in the hyperbolic (or Minkowski) 
case, its becomes immediately clear that the reality condition forbids any finite 
polynomial solutions at all in X~ for n<oo. The equat ionf(2) f ( ,O*=I has no 
meromorphic solutions with all the zeros and poles at (0, ~ ). A similar algebraic 
condition shows us that there are no singular B~icklund transformations. The lim- 
its of B~icklund transformations as or-, (0, co) seem to approach a rather boring 
identity. 

On the other hand, in the next section we will obtain concrete information 
about the hyperbolic action by examining the relationship of harmonic maps into 
CP i G SU (2) with the classical sine-Gordon equation. Here it is known that re- 
peated applications of the classical B~icklund transformation, which is identical 
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in this case to our Biicklund transformation, obtain large portions of the solution 
space from a trivial solution. The algebraic connection of these two global con- 
structions as Wick rotations of each other is not at all clear. 

5. Sine-Gordon equation 

It is a well-known theorem that the sine-Gordon equation is equivalent to the 
theory of harmonic maps into S2=Cp ~. This can be found in Pohlmeyer [15]. 
This section derives this relationship using the "gauge-free" discussion of har- 
monic maps which comes from section 1. 

We first need a lemma about harmonic maps into Grassmannians, which will 
identify those harmonic maps into U ( N )  which lie in some G(r, N). Recall that 
for the purposes of our theory 

(,3 G(r ,N)={seU(N):s2=I} .  
r 

Lemma 5.1. Suppose s:El'l ~G(r, N). Then 

(O/Or/)s+ [A,, s] =0,  

sA, + A,s= {s, A,, } = O, 

(O/O~)s+ [A~, s] =0,  

sA~ +A~s= {s, A¢} = O . 

(a) 

(b) 

(c) 

(d) 

Proof We need only prove (a) and (b),  since the two light cones behave exactly 
alike. We just compute, using s=s-  ~, 

,( os l( 
[A,,,sl= i s - ' ~ s - s s - '  = i  - - -  

Also 

0s-' s2 - 0~) 0s 
Or/ = -~q' 

0s 0s 0s 0s-  
sA,t+A,s=ss- ' -~ +s- '-~qs= Or~ 0~- S2=0" [] 

We now introduce ~o=is:Et'~-,gOG as an element lying in both U ( N )  and 
u (N). Regard it as a map into the Lie algebra. As gauge transformations carry the 
connection around, ~o becomes a special extra element. Recall from the gauge- 
invariant formalism: 

d+A-od+u-~Au+u -I du, A--*B=u-~Au, ~o~u-t~ou. (26) 
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Lemma 5.2. In the gauge.invariant formulation of harmonic maps into the Grass- 
mannian G(r, N), there exists an extra map ~o:Et'l--,flfqG with r eigenvalues i, 
N -  r eigenvalues - i satisfying 

(a) d~+ [A, ~o] =o, 
(b) {q~, A} =0. 

Proof In the usual gauge, ~0 satisfies these equations because s does. These equa- 
tions are gauge invariant. [] 

There certainly is a theory for more general Lagrangians. But for 
CP t =$2__L1(2) ,  ~o, Ae, A n all map into su(2), which is only three-dimensional. 
Recall also the invariant Lax pair, which we rewrite here for convenience: 

[0/0r/+A. +2B,. OIO¢+A e +2- 'Be]  = 0.  (27) 

Lemma 5.3. 

Proof As a 
formalism 

(0/0r/) IBel =0  and (0/0~)iA,,i =0. 

consequence of the harmonic map 

0 
~ B e +  [A,,, B~I = 0 .  
oq 

By the Leibnitz rule 

Taking the trace results in 

equation, in the invariant 

O 
.o--z- 8~ + tA., B~I = 0 .  

0 tr(B~)= 0 0-~ - ~ IB¢12=0" 

This was, of course, a gauge invariant statement. [] 

Lemma 5.4. Suppose IBel (~, rl)=b(~) is non-zero for all ~. Then there exists a 
smooth gauge change so that 

~o=is= 2j ,  Be=x/c2 b(¢)i, 

where i , j  and k form the usual quaternion basis for SU (2), 

° oi) ' io) 
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Moreover, this gauge transformation is unique in SU (2) up to 

-+/= +-(~ 01). 

Proof The fact that ½~ and [ l / v / 2  b(~)]B~ serve as standard generators for Q 
in su (2) follows from the anti-commutation relations, and it is easy to show that 
the Q they generate can be conjugated uniquely (up to ___1) to the standard one. 

[3 

Proposition 5.5. Let s :EI ' I~CP ~ c SU(2)  be harmonic. Suppose IA,(~, r/)l 
=a(r / )  ¢0 ,  IA~(~, r/) I =b(~)  ¢0 .  Then there is a gauge transformation, which is 
unique up to multiplication by +_ I, in which 

A , = 0 ,  B, =x /~  a(r/) e x p ( - u y )  iexp(uy) , 

Ou. Be=x~'2 b(~)i A¢ = --~j , 

t p = 2 j .  

Proof. First we note that we can choose the gauge of lemma 5.4 as the gauge of 
this theorem. Before we proceed further, note that there is a similar but different 
choice of gauge in which 

r~=Ej, /1,, =x /~  a ( t / ) i ,  

as there is no difference between the two light cones. Let U: E t''--, SU (2) be the 
change of gauge between the two, i.e., 

~=2y=  U -I  2 y U = U - ' O U ,  

B. = u-~v/2 a(n)iu= U-'B. u. 

It is immediately clear that U commutes withy, and hence U= exp uy for u:E L~--,R, 
since we are using a simply connected domain. 

It remains only to determine A¢ and A,. Looking back to lemma 5.2, we see 

dip+ [A, ~a] = d y +  [A,y] = [A,j] = 0 .  

So immediately we know A = aj for some real one-form a. However, we see fur- 
ther from the validity of the Lax pair that 

0 0 
B¢+a,ID', B¢] =xfi b(~) ~ i+ dn[j, i] =0. 

Hence a,,= 0. In the same vein 
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_0 B ,_  0u 
0~ , - v  -Or / [exp( -u j )  i e x p u j ] = -  ~ [j,B,,]=-ae[j,B,,] . 

It follows that A¢= a~/= (Ou/O~)j. [] 

Theorem 5.6. Let s: E ~'~ ~CP ~ ___ SU (2) be a harmonic map with 

Iael=½1s- '  Os/O~l=a(~)~O, In, l=½ls -10s/Or/l=b(r/)~O. 

Then there exists a choice of gauge, which is unique up to multiplication by + L in 
which the Lax pair for this harmonic map is of the form 

[° 1 0= ~ +2a(r/) exp ( -u j )  iexp(uj) ,  0 Ou. + v S  b( ¢) i . 

The function u satisfies the equation 

~-~--~u+a(r/)b(~) 4 sin 2u=0 .  

Proof This, in fact, is just the culmination of all our work except for the deriva- 
tion of the equation for u. This comes from the 2 ° term of the commutator (Lax 
pair) 

[0/0r/+A,, 0/0~+A¢] + [B,, B~] = 0 .  

This becomes, for us 

0 (0u .) 
O= ~ -~1 +2a(r/)b(~)[exp(-u]) iexpu] , i l .  

Since i andj  anticommute 

exp (uj) i=i exp( - u j ) .  

For those who still have not recognized the equation, we note the following 
corollary. 

Corollary 5.7. I f  a ( ~) ~ O, b ( ~) v~ O, there exists a con formal change of coordinates 
which locally makes x//-2 a( ~) = 1, x/~ b( ~) = 1. In this coordinate system 

So we see that 

[exp(-uj )  iexpuj, i ]=exp( -2u j )  ( i)2-(i)2exp(2uj)  (28) 

= exp (2uj) + e x p ( - 2 u j )  =2 sin 2uj. 

This completes the derivation. [] 
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0 0 
~--~ ~-~ u+  2 sin 2u = 0.  [] 

Here is an interesting fact. 

Corollary 5.8. Suppose we are given the Lax pair for the sine-Gordon equation as 
in theorem 5.6 with a ( r / ) x / 2 = b ( ~ ) x / ~ =  1. Suppose, also, that Ma is a trivializa- 
tion for the flat connection 

3 
Mj- '  ~-~ Ma = +4  e x p ( - u j )  i e x p ( u j ) ,  

(29) 

0 Ou. ti. 

Then the original harmonic map is o f  two forms 

s = B M _ I M i - I A  -I , s=iAMl jMi - tA  - t  

for some constant matrices A and B. 

Proof The twist AMt is just the gauge change from our original harmonic map 
formulation to the sine-Gordon form. The unknown B appears because Bs tri- 
vializes the flat connection at 4=  1 just as well as s. Our recipe for trivializing was 
good only up to constants, of  course. [] 

6. A loop group action on solutions to the sine-Gordon equation 

We reviewed in section 4 how a loop type group acts on solutions of the ex- 
tended harmonic map equation. There is, of course, an ambiguity due to choice 
of normalization of M~ or E~. Modulo this difficulty, the group acts on harmonic 
maps. Moreover, the subgroup satisfying f ( 2 ) = f ( - 1 )  acts on harmonic maps 
into Grassmannians (modulo the same difficulty). However, we wish to derive a 
formulation of this action which is compatible with the more traditional ap- 
proach to the sine-Gordon equation. 

Our chosen normalization, which we refer to as the sine-Gordon gauge, is reg- 
ular in some sense at 2 = 0, where the singularity in the Lax pair is the coefficient 
of  2 -~, the constant B¢= i. 

In the harmonic map gauge, where we have already constructed the loop group 
action, our factorization had been selected to normalize Ea at 2=  0 so E1 =/ ,  and 
we fixed the choice of Ea by fixing E~(p) for some peE  t'l. In the sine-Gordon 
gauge, customarily we fix the singularity at 2 = 0 to agree with the essential sin- 
gularity of the vacuum solution given by u = 1. The eigenfunctions which appear 
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in Ma would usually be normalized to agree with the vacuum eigenfunctions as 
x--, - oo (or x--, + co ) if the growth conditions of the solution admit this possibil- 
ity. Note for precision the following fact. 

Definition 6.1. The vacuum solution u - 0  to sine-Gordon & the solution with the 
Lax pair 

A~=A,~=O, B ¢ = B , = i .  [] 

It is an easy calculation to see that for the vacuum solution 

M~(~, r / )=exp(2r /+2- t  ~) i .  (30) 

In our choices of normalization, it is essential to note that multiplication of M~ 
by elements of the group or by meromorphic maps into the center of U (2) has 
no effect on the computations. We are in effect interested in the group 
PSU(2)  = S O ( 3 )  and its complexification PSL(2, C). However, since we have 
been using the matrix groups U (2) and GL (2, C ), we shall continue to do so. 

We employ the canonical normalization Ma(p)=I  for p =  (0, 0) rather than 
that involving limits as x--, _+ ~ .  This allows us to avoid energy decay questions. 
However, our computations are therefore not compatible with the symplectic 
structure or the standard computations. They can, however, be adjusted to agree 
with these. 

l_emma 6.2. Let Ma be the trivialization of  the Lax pair for the solution of  the sine- 
Gordon equation with Ma (p) = L Then 

Mxj=jM_a . 

Proof. 

are unique. Let 

I fMa(0)  =I,  then the solutions of 

OM 
MJ -1 --4-- =2  e x p ( - u j )  i e xp (u j ) ,  

orl 

OM Ou _ 
M~ -t = + - - ~ j + , ~ -  i 

O~ o q  

Da = ( D+ A + 2- t  B¢ d¢+2B,~ d~/), 

where 

0u .  
A = d e ,  

Note that {i , j}=0,  so 

B = i  d ¢ + e x p ( - u j )  i exp( uj) drl . 



306 K. Uhlenbeck / Harmonic maps, selfdual Yang-Mills and sine-Gordon equations 

( Da )j=j ( D_a ) . 

It follows that - j M _ a j a n d  Ma both trivialize D~ and agree at (~, r/) = (0,  0 )  and 
hence agree everywhere. [] 

We now define the group which is to act on trivializations of the Lax pair for 
the sine-Gordon equation [recall that elements which map to the center will be 
ineffective, which is why we can allow r(2) ~ 1 in (d) ]: 

~sc = { h : C W - , U ( 2 )  meromorphic and satisfying conditions ( a ) - ( d ) } ,  (31) 

(a) h ( 0 ) = / ,  
(b) lima~oo 2 - " h  (2) = a~U (2), 
(c) h(2t ) j=jh( - -2) ,  
(d) h(2)h(T t )*=r(2) I  for r a meromorphic function on CP 1. 
It is not true that elements can be factored into products of B~icklund transfor- 

mations in ~'~. So we will take the route of deriving the existence of the group 
action from the theorem we have already obtained for the action of dR on ex- 
tended harmonic maps in the harmonic map gauge. 

Lemma 6.3. Suppose h~ ~¢~c. Then h can be written as 

h(2) =q(2)A f (2 )  , 

where q is meromorphic in 2 with q( O ) = 1 , fe  d~ and A is constant. 

Proof. We claim that 

) )... 
r(2) =a ( k - p . )  

Namely we claim that the zeros and poles of r occur in complex conjugate pairs. 
This is clear for those which are not real. 

For those that are real, it is sufficient to prove that r cannot have a simple zero 
at a and by dividing h by ( 2 - a )  p to cancel the even orders. So we want to as- 
sume that r has a simple pole at a ~  and obtain a contradiction. I f r  has a simple 
zero at a real, since 

det h(2) det h-(X) =r (2)  2 , 

both h and h(;?)* have simple poles at a with one-dimensional eigenspace. Let 
h (or) v= 0. Now let w be orthogonal to v. Since h (or) # 0, h ( a )  w # 0. Also 

( h ( a ) w ) * ( h ( a ) w )  = I h ( a ) w l 2 # 0 .  

But 
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( h( a )w )*h( ot )w=w*h(  ot )*h( ot )w 

=w*h( a )*h( a )w=r(  ot )w*w=O . 

This gives us our contradiction. 
Now, define 

/ ? ( 4 ) =  ( x - P l ) ' " O - P , )  h ( ~ ) ,  ( ,~-  a , ) . . .  ( ,~-  a , , )  

f ( 2 )  = ~ ' - '  ( 1 ) h ' ( 2 ) ,  

q (2 )  = ( _  1),,+,, , ( 2 -  ce, ) • • • ( 2 -  or,,,) (,8,) • • • (,8,) 
( ; t - , e~ ) . . .  ( ; t - , e , , ) (oq  ) . . .  (,~,,,) ' 

A = f i ( _ l ) ° + ,  . ( a , ) . . .  (o~,,) 
( /~ , ) ' "  ( L )  " 

With these definitions 

h(2) =q(2  )Af( 2 ) . [] 

To give some substance to the computations, we introduce the two-parameter 
family of generators for B~icklund transformations, 

hr, p(2) = I + 2 f l  exp ( - flj) i exp (flj). (32) 

Lemma 6.4. For 7 and fl real , / /S0,  hy, p e ~ .  

Proof Certainly hr, p(0 ) = L Likewise lima~oo 2-  lhr, p(;t) = 7 exp ( - pj) i exp (flj). 
Further, since {i , j}=0,  we have hr, p(;t)j=jhy, p ( - 2 ) .  Moreover, (d) is verified 
by computation, 

hr.p(;t ) (hy, p(£) )*= [1+27 exp( - flj) i exp (flj) ] [ I - 2 7  e x p ( - f l j )  i exp flj] 

= ( I + ( & ) 2 ) i .  [] 

To write in terms of the B~icklund transformations in the harmonic map gauge, 
let 0 p = e x p ( - f l j )  i exp (flj), so 0~ = - I .  Then rip= ½ (I+iOp) is a Hermitian pro- 
jection onto a one-dimensional subspace which rotates through a circle as p moves 
from 0 to n, 
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I+;t,q~a = I + i A y ( I - 2 n a )  

= ( 1 -- i.2,) n# q- ( 1 -I- i2,) nb 

( ; t - i y - '  ) 
= ( 1 - i , ; t )  n# ; t+iy_in~-  

= q(;t)A(~# + ~ - ,  ( ; t ) ~ ) .  

Here o~=i?- ~, ~.(; t)  is defined in (25), q(;t) = ( 1 - i , ; t )  and 

y+ i  
A = n # -  , - i  ~} " 

This illustrates the relationship between the B~icklund transformations in the sine- 
Gordon gauge and those in the harmonic map gauge. It is not at all clear in the 
harmonic map gauge that these Biicklund transformations preserve the Grass- 
mann condition, so the sine-Gordon gauge is an improvement  from this point of 
view. 

Proposition 6.5. Let he ~G. Then the Birkhoff factorization 

h ( ; t )ga  = (h#g)aTa 

can always be carried out with To=! to take extended canonical trivializations to 
canonical trivializations. Moreover, i f  Ma satisfies M a ( j ) =  (/')M_x, so does 
(h#M)a. 

Proof By lemma 6.3 we have h( ; t )=g( ; t )Af( ; t )  for f~¢~.  Also, we have Ea = 
MaMa- ', since Ea is the extended solution in the harmonic map gauge. Moreover, 
by theorem 6.3 of ref. [9], we have 

f(;t)Ea = ( f  #E)aRa, 

where ( f  #E)a is smoothly defined i n f a n d  E. Now let 

h (;t)M~ =q(;t)Af(;t)EaMt =q(;t)A(f#E)aRaMn 

= (h#M)aTa. 

Here 

( h#M) a =A ( f  #E) aRoM, , (33) 

Ta = q( ;t ) ( RoMi ) - I RaMt . (34) 

The decomposition h (2) = q (;t)Af (;t) has an ambiguity, a meromorphic func- 
tion which acts trivially on Ea and is absorbed into the product q(;t)Ra, so the 
action is well defined. Since (h#M)a is obtained from an extended harmonic map 
by a gauge change RoM~ on the left and a constant A on the right, it represents the 
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trivialization of a harmonic map in a gauge-invariant setting. 
By construction, To = q ( 0 ) (RoM~) - ~RoMt = I. To check whether the canonical 

property Ma(p)=I  is preserved, note that Ea(p)=I  and M~(p)=I.  So 
( f#E)a(P) =I, 

(h#M)x(P) =A(f*E)x(P)Ro(P)M~ (p) =ARo(p) . 

However, R~(p) =f( i t ) ,  so Ro(P) = f ( 0 ) .  But 

I = h  (0)=q(O)Af(O)=A f ( 0 ) = A R o ( P ) =  (h~*M)x(p), 

since h e ~¢~¢. 
Finally, the uniqueness insures us that, ifMa]=]M_a and h (it)]=jh ( - i t ) ,  then 

(h#M)~ also has this property. [] 

Theorem 6.6. The group ~¢~c acts smoothly on canonical trivializations for the Lax 
pair for the sine-Gordon equation. 

Proof. From proposition 6.5, we have a group action which carries canonical tri- 
vializations into trivializations for the harmonic map problem in a gauge-free 
context. Moreover, if we let (h#M)a=M~ =Mx T£  l, 

- ~ - j  T ; ' ,  (35) 

(Ma)-'~--~ M * ~ = A * ' ' - ' ° #  ( 0~ ] Tj- (36) 

Our first observation is that the commutation relation ]Ma = M_a] implies A ~ 
commutes wi th]  and B ~ anti-commutes with j. 

Next we use the fact that T~=I+itT~ +.... So, by taking power series at 0 and 
(35), 

A ,, + AB ,, = A, t +it(B,, + [ T, , A, ] - O T~ / Oq ) . 

Since A,t=O, A n =0. Moreover, one can read off again that B,7 anti-commutes 
with]. 

Now, by taking (36) instead, we get 

it --IB~ -[-A~ =it -IB~ -t- (A¢ + [ T~, B~] ) .  

We conclude that B~ =B~  =i.  
Once we know * A, =0,  B~* = i  and the fact that A~ commutes wi th ]  and B,*; 

anti-commutes, the only fact we need to verify is ]B~ [2= lB, 12=2. This we do 
by checking (3 5 ) using the Laurent series at co. We can assume i t- '"T (it) ~ T(co ). 
Then from 

B,7 = T( co )B,~T( co ) - I 
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it is obvious  that 

t r ( B , ~ ) Z = t r ( B , t ) z = 2  . [] 

It is appropriate to derive the infinitesimal formulas in two ways, both directly 
and from our formulas for SEx. 

Theorem 6.7. Let g= 8f be holomorphic in a neighborhood N~ of 0 and oo with 
g(0)  =0,  g(2) +g(2-)* = 0 and g(k) j=jg(-2) .  Let F~ be a pair of contours about 
0 and ~ in N, oriented counterclockwise about 0 and ~.  Then the induced infini- 
tesimal action is given by 

? ~ M[~g(2)Ma 
MF' 8M = (2-?)2 

F~ 

for ? in the region between the two contours. 

Proof Suppose we have factored smoothly 

h,(2)Ma = (h*t M)x T,.x 

for a one-parameter family with d /d t l ,=oh , (2)=g(2) .  Here we assume h,(2) is 
in a suitable extension of 4 o .  Then, differentiating at t = 0, we get 

g(2 )Ma = 8M~ + MaQ~ , 

where To.a=Iand d/dt[  ,=oTt.a=Qa. Then 

M[~g(2)Mx=M; ~ 8Ma +Qa 

is a decomposition of M [  Z g(2)Mx, which is holomorphic in punctured neigh- 
borhoods of 0 and oo, into M ;  ~ 8Ma, which is holomorphic on C*, and Qa, which 
is holomorphic in neighborhoods of 0 and oo. The normalization is Qo = 0i and 
the solution is via contour integrals. For ? inside the neighborhoods 

Y ~) Mz~g(2)Ma 
O r = -  j (2-?)2  

F, 

For ? in the complement of these neighborhoods 

Y ~ MT~g(2)M~ 
MT, 8M = (2-?)2 

,re 

The sum reduces to a small contour about ?, which is counterclockwise, 

MT'g(2) 8Mr= ? 
M~l g(2 )Ma 

2hi ( 2 - ? ) 2  c12, 
ly-21 =el2  
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which is just the Cauchy formula. 
We have, in an alternative derivation, 

E7 ~ BEy= ( ? - 1 )  ~ Ez~g(2)Ea d2 
2~i ( 2 - 7 )  ( 2 -  1 ) 

Fe 

for Ey =M~,'Mi-' in the harmonic map gauge. So 

M~, ' 8M~,=MFIE~ -' ~EvM 1 +MF'  ~Mi. 

This gives us the formula 

M r '  8 M r -  7 - 1  
M ~  l g (  A )Ma 

2hi ~2"--y-) (--2-S- i 3 dtq'-~ m l ' ~ ) m l  " 
F, 

If we prescribe the gauge variation 

1 (~ M;'gO.)Ma 

then we obtain the correct formula also. 

Corollary 6.8. We claim 

1 ~ Mztq(2)M~ 
q°°J= + ~ 2 d2 

for a function q on E"'. I f  u is the solution of the sine-Gordon equation 

0 0 
- - - -  u + 2  sin(2u) =0  
0~0,t 

corresponding to Ma, then q solves the linearization 

8 0 
- - - - q + 4 c o s ( 2 u )  q = 0 .  

[] 

Proof We claim that q is just the variation 8u ofu associated to 8Mx. The formula 
for Qoo=d/dtl ,=oT,.oo is just 

1 £ M~"g(2)Ma 
aoo- 2rri ~ 2 d2. 

F, 

But QooJ=JQoo, Qoo = q J, 

B ,t = exp ( - utj) i exp ( u,j ) = Tt.~o (B,,) T t-lo~. 
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It is not difficult to see that 

~ , o  d 8uj= d u t j = - -  T t ~ = - Q o o .  
= dt t=o ' 

This can be checked directly also, since, if 

1 (~ M£~g(2)M~ 
Q=qJ= - ~  a 2 d2, 

F~ 

then 

0Q 
O~ - 276 [M£tg(2)M~,A,]  d2. 

F, 

Working this out, we get that 

0~ Or/ 0~ Or/ 276 
F~ 

= q[ [j, e x p ( - u  j )  i exp (uj)] ,  i] 

= 2 q [ e x p ( - u j )  k exp(uj),  i] 

= -2q(exp(wuj)  + e x p ( - 2 u j )  )j 

= - 2 q c o s ( 2 u ) j ,  

as claimed. [] 

We conclude this section by asserting that the action of the "simple" factors 
hr.p generates a two-parameter family of solutions which precisely corresponds to 
the classical two-parameter family of B~icklund transformations for the sine-Gor- 
don equation. There are many ways to perform the calculations. The choice of ot 
corresponds to an initial condition which may vary with the choice of Mx. 

Lemma 6.9. Let h(2)=h~,p(2)=I+2~, e x p ( - a j )  i exp(a j ) .  Then the new Lax 
pair for (Hr.pM)a, where Ma is a canonical trivialization for the solution u of  the 
sine-Gordon equation, has the form 

( or ) 
T£~ 2e-UiieUJT~+ Or/ J =2e-WJie'q' 

E( ) ] 0w 
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where T a = I + ? 2 e x p ( - w j )  i e x p ( v j ) .  Here w:E'"-- ,R is the new solution, 
v: E ~ '~ ~ R  is an auxiliary function. 

Proof According to our factorization procedure, (h#M)2 is formed from Ma by 

(h#M)~ = h (2)Ma T~- ' ,  

where h and Thave poles and zeros as maps into PSL(2, C) at points which must 
correspond to each other. Since h has poles and zeros only at 2 = +_ i?-  ~, the same 
must be true for T. Moreover, the normalization procedure requires Ta(0)=L 
The requirement that Taj=.iT_a fixes the form of Ta as written. This is the same 
calculation as for B~icklund transformations for the Euclidean harmonic map 
problem done in chapter 5 of our previous paper [9]. [] 

Theorem 6.10. Let hr, p be a generator of  a Biicklund transformation. Then the new 

extended solution has the form 

(h#m)a =h(,~)m~ Ta, 

wh ere Ta = I +  ;t? exp ( - vj) i exp (vj). Moreover v: E i. ~ ~ ~ solves the coupled pair 

o f  equations 

? ~-~t/+sin 2 ( u -  v) =0  , ( v - u ) + ~ s i n 2 v = O ,  

and w = 2 v -  u is the new solution to the sine-Gordon equation. 

Proof We work first with the equation 

0 r~ 'qi e )'~ T£1(2e-,,Jie,,J)T,~ + T ~ l - ~  =2e-  

According to the lemma 

Ta = I + y2e-Vq e vi . 

An easy calculation shows that 

T2 -l = ( 1 + ~2~2 ) - I  (I__ ~,2e- vii e~i) . 

Substitute for Tz and T j- ~ and do the calculations carefully, remembering i j+f i= 0 

and i exp (vj) = e x p ( - v j )  i. We get then 

) t ( e - 2 " J - 2 , e - : V J ~ j ) i  

q. ;t2 (•e2( . . . .  )j e2( . . . .  ) i + 2 7 2 j ~  ) 

.at. ~ 372e(-4v+ 2,,)Ji 

= ( I + y 222 ) 2 e - ' J i  e 'q.  
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Clearly the single coefficient of 22 must vanish. Since 

e2("-VU-e-2("-~)~=2 sin 2(u-v)j, 
this is equivalent to 

0v 
~-~-~ +sin 2 ( u - v ) = 0 .  

Substitute this into the coefficient of  2 and it becomes 

e-2,,Jq_e-2UJ(e2(U-U)J e2tu-u)J) i=e(2,,-4,,)Ji.  

This agrees with the coefficient of ~3)~2, and can be rearranged as 
exp [ ( - 2u+ u)j]  i exp [ ( 2 0 -  u)j] .  Setting w= 2 v -  u as in the theorem makes the 
equation correct. 

Now follow the same format for the second pair of equations, 

0w. 

Multiply the equation as before by 1 -t-22~, 2. Then expanding each side in powers 
of;t, 

0u .  i 2 - l + r ( e -  2vj_ e2OJ) + -~1 

+2(27je-2°jO(u-v) O, + F2e-4~J) / 

0u 

( 0w) = 2 - ~ i + - ~ j  (I+22~,2). 

When we equate coefficients of 2 - ~ they agree. Equating coefficients of 2 2 agrees 
with setting w= 2v -u .  Equate coefficients of 2 to get 

2~-lje-2qO(u--v) q_e-4•= 1 , 
0~ 

9,-1 0 ( u - v )  - s i n  2v=0 
0~ 

Substitute in the coefficient of 2 ° to get 

Ou. 0 0 
- 2 ~  sin 2vj+ ~j= ~ (2v-u) j= -~wj. og 
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Hence we have a consistent set of equations equivalent to those given in the 
theorem. [] 

It should be noted that the equations of  theorem 6.10 are more familiar when 
written in terms of w. Then 

2v=w+u, 2 ( v - u ) = w - u ,  

O(w+u) 
)' Or/ - 2  s i n ( w - u )  = 0 ,  

0 
0--~ (w-u) +27  s in (w+ u) = 0 .  

The unusual factors of  2 appear due to our different coefficient (O0/O~Or/)w 
+ 2  s i n ( 2 w ) = 0 .  These equations are the equations of  the classical B~icklund 
transformation, normalized for our coefficients. 
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